Aging in a system composed of Kuramoto Oscillators

Shadi Esmaeili, Michel Pleimling

Darka Labavic, Hildegard Meyer-Ortmanns
What is Synchrony?

Spontaneous order
Order in space
Order in time

Synchrony
Synchrony in Nature
Kuramoto Model

\[\frac{d \phi_i}{dt} = \omega_i + \sum_{j}^{N} K_{ij} \sin(\phi_j - \phi_i) \]

\(\omega_i \rightarrow \text{Natural Frequency} \)

\(K_{ij} \rightarrow \text{Coupling Matrix} \)

Why Kuramoto Model?

Aging

Preparing the system

t_{waiting}

Perturbing the system

Measuring the response to perturbation

t_w dependent response

Main characteristics of aging

- Slow relaxation
- Breaking of time translation invariance
- Dynamical scaling

Aging is observed in:

- Structural glasses
- Spin glasses
- Magnetic systems
- Colloids
\[
\frac{\partial \phi_i}{\partial t} = \omega + \frac{\kappa}{N_i} \sum_{j}^{N} \sin(\phi_j - \phi_i) + F(\vec{\phi})
\]

Homogeneous frequencies

\(\kappa = -|\kappa| \) repulsive coupling

\(N_i = 6 \) Hexagonal lattice

External Field

\(c \sin(\phi_i)\)

Oscillatory

Constant

\(d\)

Frustrated bonds
\[C(t, t_w) = \frac{\langle \tilde{\phi}(t)\tilde{\phi}(t_w) \rangle - \langle \tilde{\phi}(t) \rangle \langle \tilde{\phi}(t_w) \rangle}{\sigma_t \sigma_{t_w}} \]

\[c(t, t_w) = C(t, t_w) - C_{\text{plateau}} \]
\[F(\varphi_i) = (0.1) \sin(\varphi_i) \]

\[F(\varphi_i) = \sin(\varphi_i) \]
F(\phi_i) = 0.1

F(\phi_i) = 1
$c(t, t_w) \propto t_w^b e^{a(t-t_w)^\alpha}$

\begin{align*}
&\begin{align*}
 a &= -6.1 \times 10^{-4} \\
 \alpha &= 1.024 \\
 b &= 0.97
\end{align*} \\
&\begin{align*}
 a &= -1.13 \times 10^{-4} \\
 \alpha &= 1.162 \\
 b &= 0.837
\end{align*}
\end{align*}

$F(\phi_i) = (0.1)\sin(\phi_i)$

$F(\phi_i) = \sin(\phi_i)$
\[c(t, t_w) \propto t_w^b e^{a(t-t_w)^\alpha} \]

\[a = -2.4 \times 10^{-4} \]
\[\alpha = 1.07 \]
\[b = 1.219 \]
\[F(\varphi_i) = 0.1 \]

\[a = -2 \times 10^{-2} \]
\[\alpha = 9.5 \times 10^{-1} \]
\[b = 1.166 \]
\[F(\varphi_i) = 1 \]
Summary

\[\frac{\partial \varphi_i}{\partial t} = \omega + \frac{\kappa}{N_i} \sum_{j}^{N} \sin(\varphi_j - \varphi_i) + F(\varphi) \]

\[\begin{cases} c \sin(\varphi_i) \\ d \end{cases} \]

Novel scaling behavior

\[c(t, t_w) \propto t_w^b e^{a(t-t_w)^\alpha} \]

<table>
<thead>
<tr>
<th>d</th>
<th>c</th>
<th>a</th>
<th>α</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1 to 0</td>
<td>-0.00061</td>
<td>1.024</td>
<td>0.97</td>
</tr>
<tr>
<td>0</td>
<td>1 to 0</td>
<td>-0.000113</td>
<td>1.162</td>
<td>0.837</td>
</tr>
<tr>
<td>0.1 to 0</td>
<td>0</td>
<td>-0.00024</td>
<td>1.07</td>
<td>1.219</td>
</tr>
<tr>
<td>1 to 0</td>
<td>0</td>
<td>-0.02</td>
<td>0.95</td>
<td>1.166</td>
</tr>
</tbody>
</table>
Thank You