Non-equilibrium relaxation of driven topological defects

Hiba Assi1,2, Bart Brown1, Harshwardhan Chaturvedi1, Ulrich Dobramysl3, Michel Pleimling1,4, Uwe C. Täuber1

1 Department of Physics & Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
2 Physics & Engineering Dept., Washington & Lee University, Lexington, VA
3 Gurdon Institute, University of Cambridge, Cambridge, U.K.
4 Academy of Integrated Science, College of Science, Virginia Tech

83rd SESAPS Meeting – Charlottesville, VA – 12 November 2016

Review: \textit{Molecular Simulation} \textbf{42}, 1401 (2016)
Support: U.S. Department of Energy, DOE-BES
Topological defects

'Mesoscopic' continuum description of condensed matter system: n-component order parameter field, assume $O(n)$ symmetry

→ **topological defect**: singularity, with integer ‘winding number’ k

- $n = 1$: scalar Ising field, discrete Z_2 up/down symmetry
 → **domain wall**

- $n = 2$: xy model, continuous planar rotational symmetry
 → **vortices, anti-vortices** $k = \pm 1$;
 also for complex order parameter with $U(1)$ gauge symmetry

- $n = 3$: Heisenberg model, continuous rotational symmetry
 → **hedgehogs, ‘skyrmions’**
Physical ‘aging’

Prepare (non-linear, stochastic) dynamical system in initial state ‘far away’ from long-time asymptotic steady-state configuration:

- **steady state stationary**: $\langle S(t) \rangle = \langle S(0) \rangle$ time-independent, two-point correlations: $C(s, t) = \langle S(s)S(t) \rangle_c = C(t - s)$
- **initial state breaks time-translation invariance**
- ‘slow’ dynamics: transient time window becomes accessible
dynamic scaling:

$$C(x, t, s)_c = \langle S(0, s)S(x, t) \rangle_c = s^{-b} \hat{C}\left(\frac{x}{L(t)}, \frac{L(s)}{L(t)}\right)$$

characteristic length: $L(t) \sim t^{1/z} \rightarrow$ **dynamic exponent** z

autocorrelation function ($x = 0$) in ‘aging’ scaling regime:

$s \ll t : C(0, t, s)_c = s^{-b} \hat{C}(t/s) \sim s^{-b} [L(s)/L(t)]^\lambda \sim t^{-\lambda/z}$

→ non-trivial information about **fluctuations, correlations**

- scaling exponents b, z, λ, and scaling functions **universal**?
- or rather **characteristic** of specific material properties?
Type-II superconductors, magnetic flux lines

London penetration depth/coherence length $\lambda/\xi > \sqrt{2}$:

- **negative** interfacial free energy \rightarrow mixed phase (normal/SC)
- $H_{c1} = 4\pi\epsilon/\Phi_0 < H < H_{c2} = \Phi_0/2\pi\xi^2$: $n = B/\Phi_0$ flux lines
- **elastic line tension**: $\epsilon = (\Phi_0/4\pi\lambda)^2 \ln(\lambda/\xi)$, $\Phi_0 = hc/2e$
- **vortex repulsion**: $V_{\text{int}}(r) = 2\epsilon_0 K_0(r/\lambda) \rightarrow$ Abrikosov lattice
- **thermal wandering**: flux liquid, vortex motion \rightarrow dissipation effective flux pinning required \rightarrow material defects, smooth V_D
Theoretical description

London limit $\lambda \gg \xi$: vortices ↔ trajectories $r_j(z) \rightarrow$ elastic lines
employ grand-canonical ensemble, with $\mu = (H - H_{c1})\Phi_0/4\pi$:

$$H_N = \int_0^L dz \sum_{j=1}^N \left[\frac{\epsilon}{2} \left| \frac{dr_j(z)}{dz} \right|^2 + V_D(r_j(z)) + \frac{1}{2} \sum_{i \neq j} V_{int}(r_{ij}(z)) \right]$$

$$Z_{gr}(T, H) = \sum_{N=0}^{\infty} \frac{e^{\mu NL/k_B T}}{N!} \int D[r_j(z)] e^{-H_N[r_j(z)]/k_B T}$$

Langevin Molecular Dynamics:

- discretize into layers z perpendicular to magnetic field B
- assume overdamped dynamics, Bardeen–Stephen viscosity η
- uncorrelated Gaussian thermal noise $f_{j,z}$
- average over stochastic noise ‘histories’:

$$\eta \frac{\partial r_{j,z}(t)}{\partial t} = - \frac{\delta H[r_{j,z}(t)]}{\delta r_{j,z}(t)} + f_{j,z}(t)$$

$$\langle f_{i,z}(t) \cdot f_{j,z'}(t') \rangle = 4\eta k_B T \delta_{ij} \delta_{zz'} \delta(t - t')$$

parameters \sim YBCO; 16 vortices, 1116 \ldots 1710 pins per layer
Temperature quenches: point pins vs. columnar defects

- Initialize system: *randomly placed straight* vortex lines
- Evolve and relax for 100,000 time steps
- Instantaneously raise temperature

Measure gyration radius \(r_g(t) = \sqrt{\langle [r_{j,z}(t) - \langle r_j(t) \rangle]^2 \rangle} \)

Isolated point pins

- Exponential decay; no aging signatures
 - Point defects: \(\tau = 3.4 \cdot 10^4 \): enhanced thermal wandering
 - Linear pins: \(\tau_1 = 1.6 \cdot 10^3 \), \(\tau_2 = 5.7 \cdot 10^4 \): relax double kinks
Magnetic field / vortex density quenches

evaluate two-time `height' autocorrelation function:
\[C(t, s) = \langle (r_j(z(t)) - \langle r_j(t) \rangle) (r_j(z(s)) - \langle r_j(s) \rangle) \rangle \]

- initialize and relax system for duration \(r = 100,000 \) time steps
- suddenly change magnetic field \(\rightarrow \text{add or remove} \) flux lines
- new vortices: \(s, t \); original vortices: \(\sigma = r + s, \Gamma = r + t \)

(a) **fixed flux density**: system relaxed
(b) **field down-quench**: 21 \(\rightarrow \) 16 lines aging

(c) **field up-quench**: 16 \(\rightarrow \) 21 lines aging
(d) only 5 **added lines**: non-monotonic dynamics
Current quenches: correlated driven initial state

compute normalized two-time ‘height’ autocorrelation function:

\[
C(t, s) = \frac{\langle (r_{j,z}(t) - \langle r_j(t) \rangle)(r_{j,z}(s) - \langle r_j(s) \rangle) \rangle}{\langle (r_{j,z}(s) - \langle r_j(s) \rangle)^2 \rangle}
\]

- stay within moving regime: exponential relaxation, no aging
- quench from moving to pinned glassy phase: clear aging; scaling exponents: \(b \approx 0.005, \lambda_C/z \approx 0.011 \)

see Harsh Chaturvedi, contributed talk, session M 2.1
Relaxation dynamics of skyrmions in magnetic films

magnetic skyrmions:
- two-dimensional *chiral* magnet
- no inversion symmetry
- weak perpendicular magnetic field \vec{H}

coarse-grained energy: ferromagnetic exchange, helical interaction

$$H = \int d^2r \left[J (\nabla \hat{\mathbf{n}})^2 + D \hat{\mathbf{n}} \cdot \vec{\nabla} \times \hat{\mathbf{n}} - \vec{H} \cdot \hat{\mathbf{n}} \right]$$

effective particle model: $\eta \mathbf{v}_i = \mathbf{F}_{i}^{M} + \mathbf{F}_{i}^{s} + \mathbf{f}_i$
- Magnus Force: $\mathbf{F}_{i}^{M} = \beta \hat{\mathbf{z}} \times \mathbf{v}_i$
- skyrmion repulsion: $\mathbf{F}_{i}^{s} = F_0 \sum_{j \neq i} K_1(r_{ij}) \hat{\mathbf{r}}_{ij}$
- thermal white noise:
 $$\langle \mathbf{f}_i \rangle = 0, \quad \langle \mathbf{f}_i(t) \cdot \mathbf{f}_j(t') \rangle = \sigma \delta_{ij} \delta(t - t'), \quad \sigma = 4\eta k_B T$$

two-time density autocorrelation function (149 skyrmions):

$$n_i = 0, 1: \quad C(t, s) = \langle n_i(s) n_i(t) \rangle$$

(a) $t = s$
(b) $t > s$
(c) $t >> s$
Skyrmion relaxation kinetics following temperature quench

Mean nearest-neighbor distance and scaled density autocorrelation:

- no Magnus force ($\beta = 0$):
- with Magnus force, $\beta/\eta = 1$:

\[L(t) \]

\[t \]

\[\sigma \]

\[b \]

\[0.0 \quad 0.1 \quad 0.2 \quad 0.5 \]

\[-0.2 \quad -0.1 \quad 0.0 \quad 0.33 \]

→ Aging scaling depends on temperature, Magnus force strength

See Bart Brown, contributed talk, session G 2.4
Summary and conclusions

- 3D elastic line model for disordered type-II superconductors
- utilized Langevin molecular dynamics
- studied external parameter quenches: sudden changes of temperature, magnetic field, driving current
- slow (algebraic, logarithmic) relaxation → physical aging
- (approximate) aging scaling exponents non-universal: depend on physical parameters, disorder, and initial states
- 2D particle model for skyrmions in chiral magnetic films
- temperature quenches: aging modified by Magnus force
- non-equilibrium relaxation: tool for materials characterization