Large-x Structure Function Data from JLab

Peter Monaghan
Christopher Newport University

SESAPS Meeting
Charlottesville, VA
11th November 2016
Introduction

- Physics Motivation
- Using JLab data from 6 GeV experiments
- Application for theory
- JLab at 12 GeV
Electron-Nucleon Scattering

- Inclusive cross section for $eN \rightarrow eX$
- Can be expressed in terms of absorption of transverse and longitudinal photons.

\[
\frac{d^2\sigma}{d\Omega dE'} = \Gamma \left(\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2) \right)
\]

- Nucleon structure information encoded in F_1, F_2

\[
F_1(x, Q^2) = \frac{K}{4\pi^2 \alpha} M \sigma_T(x, Q^2)
\]
\[
F_2(x, Q^2) = \frac{K}{4\pi^2 \alpha} \frac{\nu}{(1 + \nu^2/Q^2)} \left[\sigma_T(x, Q^2) + \sigma_L(x, Q^2) \right]
\]
Gluon Distributions

- Gluon distribution sensitive to F_2 through logarithmic evolution in Q^2.
- Large uncertainties in gluon distribution for $x > 0.3$.
- Use F_L instead to access the glue.

$$G(x) \approx \frac{d}{d \log Q^2} F_2(x, Q^2)$$
Longitudinal Structure Function, F_L

- Next-to-Leading Order (NLO) gluons contribute to both F_1, F_2
- Obtain a gluon sum rule.

$$F_L(x) = \frac{\alpha_s}{\pi} \int_{x}^{1} \frac{dy}{y} \left(\frac{x}{y} \right)^2 \left\{ \frac{4}{3} F_2(y) + 2c(n_f) \left(1 - \frac{x}{y} \right) yG(y) \right\}$$

- At leading twist, F_L is directly sensitive to the gluons.
Strong coupling constant, α_s expansion

- In QCD is dependent on Q^2 and mass scale Λ

$$\alpha_s(Q^2) = \frac{4\pi}{\beta_0 \ln(Q^2/\Lambda^2)} \left\{ 1 - \frac{\beta_1}{\beta_0^2} \frac{\ln[\ln(Q^2/\Lambda^2)]}{\ln(Q^2/\Lambda^2)} + (\cdots) \right\}$$

- Leading order (LO)
- Next-to-Leading order (NLO)
- Next-to-Next-to-Leading order (NNLO)
Moments Expansion and Twist

- In the Operator Product Expansion (OPE), moments can be expanded in powers of $1/Q^2$

$$M_L^{(n)}(Q^2) = \sum_\tau \frac{A_\tau^{(n)}(\alpha_s(Q^2))}{Q^{\tau-2}}$$

$$= A_2^{(n)} + \frac{A_4^{(n)}}{Q^2} + \frac{A_6^{(n)}}{Q^4} + \cdots$$

Matrix elements of operators with a specific "twist" τ

$\tau = \text{dimension} - \text{spin}$

$\tau = 2$

$\tau > 2$
Measuring F_L

\[
\sigma_R = \frac{1}{\Gamma} \frac{d^2 \sigma}{d\Omega dE'} = \sigma_T(x, Q^2) + \epsilon \sigma_L(x, Q^2)
\]

\[
\sigma_T \propto F_1 \quad \sigma_L \propto F_L
\]

\[
F_L = \left(1 + \frac{Q^2}{\nu^2}\right) F_2 - 2x F_1
\]

- Determine F_L through a Rosenbluth separation of the cross-section
- Require data measured at fixed Q^2 and x, at multiple ϵ points
 ⇒ need multiple beam energies and spectrometer settings
- $F_L \sim 25\%$ of cross-section for JLab kinematics σ_T and σ_L
 ⇒ require $< 2\%$ uncertainty (pt-to-pt) in ϵ to extract F_L to $\sim 15\%$
Moments of Structure Functions

- Determination of structure function moments allows the transition of QCD from asymptotic to confinement scales to be studied

\[M_{2,L}^{(n)}(Q^2) = \int_0^1 dx \ x^{n-2} \ F_{2,L}(x, Q^2) \]

- Moments of structure functions are their x-weighted integrals ⇒ allow \(Q^2 \) dependence to be studied

- Higher moments are weighted towards higher x-values ⇒ poorly determined

- At large x, cross sections are small, so resulting extraction of gluon density becomes increasingly difficult ⇒ large uncertainties in gluon density
Analysis of Longitudinal Moments

- F_L sensitive to gluon distribution at Next-to-Leading Order
- F_L also sensitive to power corrections in Q^2
- Previous study by Ricco, Simula and Battaglieri (Nucl. Phys. B555, 306-334, 1999)
 - ⇒ little data at low Q^2 and high x
 - ⇒ “… transverse data with better quality at $x > 0.6$ and $Q^2 < 10 \text{ (GeV}/c)^2$ and more
- Precise, systematic determinations of the L/T cross-section ratios are still required”
- New cross section data available from JLab (at high x and low Q^2) and HERA (low x)
 - ⇒ high precision measurements, from dedicated experiments
 - DATA driven analysis
Nachtmann Moments

- Nachtmann moments, defined in terms of ξ, removes target mass corrections $\sim M^2/Q^2$

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/Q^2}}$$

$$M_L^{N(n)}(Q^2) = \int_0^1 dx \frac{\xi^{n+1}}{x^3} \left\{ F_L(x, Q^2) + \frac{4M^2x^2}{Q^2} \frac{(n+1)\xi/x - 2(n+2)}{(n+2)(n+3)} F_2(x, Q^2) \right\}$$

- Nachtmann moments from experiment are compared to Cornwall-Norton moments
- from (leading twist, $M=0$) pQCD calculations
 ⇒ are higher twist components important?
 ⇒ is the gluon contribution in the leading twist calculation sufficient?
Data Coverage in x and Q^2

- L/T separated data → cross section data
- Proton data only
- JLab data over region with higher x and lower Q^2

for $Q^2 < 4$, JLab data covers ~50% of x range
Bin-center F_L Data in Q^2

$Q^2 = 0.75$ (GeV/c)2

$Q^2 = 1.75$ (GeV/c)2

$Q^2 = 2.5$ (GeV/c)2

$Q^2 = 3.75$ (GeV/c)2

$Q^2 = 5.0$ (GeV/c)2

$Q^2 = 6.5$ (GeV/c)2

$Q^2 = 8.0$ (GeV/c)2

$Q^2 = 10.0$ (GeV/c)2

$Q^2 = 15.0$ (GeV/c)2

$Q^2 = 20.0$ (GeV/c)2

$Q^2 = 45.0$ (GeV/c)2
Bin-center F_2 Data in Q^2
Filling Gaps in the Data

- Use model to calculate empty bins
 DIS: \(W^2 > 3.9 \text{ GeV}^2 \)
 Resonance: \(W^2 < 3.9 \text{ GeV}^2 \)
 \(\Rightarrow \) apply rescale factor based on the error weighted average of adjacent data points

- for \(x < 0.4 \), use all data points to determine the rescale factor

Peter Monaghan, SESAPS Meeting, 11th November 2016
Error Estimation

- Use Monte Carlo method to estimate uncorrelated errors in data
- Generate pseudo-data via Gaussian → randomisation of data within error bars
 ⇒ distribution of moment contributions
 ⇒ derive statistical error from standard deviation of moment distributions
- Model dependent error estimated via analysis using different models ⇒ small
Nachtmann M_L Moments

- Comparing data to global PDF fits
- Higher twist appears to improve the fit
- Observe missing strength in highest moment – largest weighting by high x
 \Rightarrow require larger gluon contribution at large x?
 \Rightarrow higher twist effects?

- MSTW excludes high x data
- CJ includes high x data, but not F_L data directly (HT not available)
- ABKM includes higher twist terms but fits to a subset of the data
Nachtmann M_L Moments

- Comparing different orders of only the MSTW calculation to data
- Higher order calculations in better agreement with data – NNLO best
 ⇒ perhaps no HT contributions needed
- Highest moment curves all undershoot the data
 ⇒ perhaps a larger gluon contribution at high x
- Need improved global fits to disentangle different effects
CJ15 at a Glance

<table>
<thead>
<tr>
<th></th>
<th>JLab & BONUS</th>
<th>HERMES</th>
<th>HERA I+II</th>
<th>Tevatron new W,Z</th>
<th>LHC</th>
<th>ν+Adi-μ</th>
<th>Large-x treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJ15 *</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>CT14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>MMHT14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NNPDF3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓ (✓)</td>
</tr>
<tr>
<td>JR14</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ABM15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HERAPDF2.0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Reproduced courtesy of A. Accardi
Deuterium data and nuclear corrections important for accuracy and precision of d/u determination for x>0.6
JLab at 12 GeV

- Double Q^2 range
- Similar precision to JLab at 6 GeV
- E12-10-002 – F_2 at large x

CJ cut: $W^2 > 3 \text{ GeV}^2$

Peter Monaghan, SESAPS Meeting, 11th November 2016
BoNuS-12 Experiment

JLab E12-06-113

CJ11
- PDF uncertainty
- nuclear uncertainty
- BONUS12 projected

BONUS 12

SU(6)
- helicity conserv
- scalar diquark

Peter Monaghan, SESAPS Meeting, 11th November 2016
Marathon Experiment

JLab E12-10-103

CJ11

PDF uncertainty
nuclear uncertainty

JLab (MARATHON) projected

MARATHON

\[
\frac{d}{u}
\]

x

\[
0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1
\]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1\]

Peter Monaghan, SESAPS Meeting, 11th November 2016
Summary

- JLab experiments produced high precision structure function data at large-x
- Combine with global datasets and use in PDF fits
 - Add further improvements to theory
 - Reduction in error bars
- Moments analysis indicated importance of higher twist and/or gluon contributions
- JLab at 12 GeV will provide more large-x data, at higher Q^2