Relaxation Dynamics of Interacting Skyrmions in Thin Films

Bart Brown
Michel Pleimling

Center for Soft Matter and Biological Physics
Department of Physics, Virginia Tech

November 9, 2016
Magnetic Skyrmions are particle-like spin textures which were recently shown to exist in chiral magnets without inversion symmetry in the presence of a weak magnetic field of $\sim 100 \text{mT}$ (applied \perp to the plane in thin films).

- Topological winding number:
 \[Q = \frac{1}{4\pi} \int dxdy \vec{n} \cdot (\partial_x \vec{n} \times \partial_y \vec{n}) \]
- Can be moved by very low current densities

Coarse-Grained Thin Film Hamiltonian

The local magnetic moment is described by the unit vector \(\hat{n}(\vec{r}, t) \).

\[
\mathcal{H} = d \int d\vec{r}^2 \left[\frac{J_{ex}}{2} (\nabla \hat{n})^2 + D\hat{n} \cdot \nabla \times \hat{n} - \vec{H}_a \cdot \hat{n} \right]
\]

- Film thickness, \(d \ll \) skyrmion length scale
- Ferromagnetic exchange interaction favors spin alignment
- Antisymmetric exchange interaction favors helical ordering
- Weak (~ 100 mT) magnetic field applied \(\perp \) to thin film

Mühlbauer, Binz, Jonietz, Pfleiderer, Rosch, Neubauer, Georgii, Böni. Science 323, 915 (2009)
Particle Based Model

\[\alpha \vec{v}_i = \vec{F}_i^M + \vec{F}_i^{ss} + \vec{F}_i^T \]

- Magnus force acting on the \(i_{th} \) skyrmion:
 \[\vec{F}_i^M = \beta \hat{z} \times \vec{v}_i \]

- The repulsive force between skyrmions:
 \[\vec{F}_i^{ss} = \sum_{j \neq i} F_0^{ss} K_1(r_{ij}) \hat{r}_{ij} \]

- Assume a Gaussian noise term:
 \[\langle F^T_\mu \rangle = 0, \langle F^T_{i,\mu}(t)F^T_{j,\nu}(t') \rangle = \sigma \delta(t - t') \delta_{ij} \delta_{\mu\nu} \]

Simulation Details

- Skyrmions interact on a periodic domain with an aspect ratio of $2/\sqrt{3}$.
- The Langevin equation is solved using a 4th order RK method.
- At $t = 0$ the simulation is quenched to a finite noise.
- The number of skyrmions in each simulation is 149.

After a temperature quench at $t = 0$, (a), skyrmions relax into a triangular lattice configuration to minimize interactions, (b, c).
Interacting skyrmions in the zero noise limit with $\beta/\alpha = 0$. The particles relax algebraically in time into a triangular lattice.
The non-zero Magnus force causes rotations as the skyrmions relax into a triangular lattice configuration.
Two-Time Density Correlation Function

Consider the occupation number $n_i(t)$ for the i_{th} skyrmion.

\[
n_i(t) = \begin{cases}
0 & : \text{i_{th} particle is outside of the region at time t} \\
1 & : \text{i_{th} particle occupies the region at time t}
\end{cases}
\]

\[
C(t, s) = \langle n_i(t)n_i(s) \rangle
\]

- Circles are drawn about each skyrmion at the waiting time s.

(a) $t = s$

(b) $t > s$

(c) $t \gg s$

The skyrmions move out of their circles as they relax into the triangular lattice configuration so that in the example above, all $n_i = 1$ in (a) and 0 in (c).

Results: Without the Magnus Force, $\beta/\alpha = 0$

We measure the average nearest neighbour distance as a function of time, $L(t)$, and $C(t, s)$ for various waiting times as well as different values of σ. We find that $C(t, s)$ has a non-universal scaling exponent, b, that is a function of σ.

- As the skyrmions relax, the length scale evolves in time as a power-law before the skyrmions are captured.

<table>
<thead>
<tr>
<th>σ</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>-0.2</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Results: With the Magnus Force, $\beta/\alpha = 1$

We turn on the Magnus force and likewise measure $L(t)$ and $C(t, s)$. The Magnus force drives nearest neighbours closer on average which further lowers $L(t)$ for large σ, but helps the system relax into the triangular lattice for low σ.

- The skyrmions become captured very quickly in the $\sigma = 0.5$ case, obscuring the power law regime.

<table>
<thead>
<tr>
<th>σ</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>-0.5</td>
<td>-0.33</td>
<td>0.0</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Conclusions

- Relaxation into the triangular lattice is not described by a universal scaling law. The scaling exponent depends on both σ and β/α.
- After the formation of the lattice, the Magnus force drives nearest neighbours closer on average.
- The Magnus force causes rotations during the formation of the triangular lattice at low σ which has the effect of increasing the magnitude of b for low values of σ.