Parallel Critical Fields in Niobium: Comparison to Theory

P.R. Broussard, ¹ A. Hunziker ² A. Davis ¹

¹Covenant College, Lookout Mountain, GA 30750
²University of Basel, Switzerland

SESAPS Fall 2016 Presentation
Acknowledgments

- Covenant College for support of student work
- Georgia Tech for thickness measurements
- Prof. C.B. Eom (Univ of Wisconsin-Madison) for XRD work
Introduction

- Theory for the parallel critical field in thin clean superconducting films is varied.
Theory for the parallel critical field in thin clean superconducting films is varied.

Claim by V. Kogan on possible enhancement in T_c for thin clean films.
Introduction

- Theory for the parallel critical field in thin clean superconducting films is varied.
- Claim by V. Kogan on possible enhancement in T_c for thin clean films.
- Work by Scotto and Pesch, and later by Hara and Nagai claim this is incorrect.
Theory for the parallel critical field in thin clean superconducting films is varied.

Claim by V. Kogan on possible enhancement in T_c for thin clean films.

Work by Scotto and Pesch, and later by Hara and Nagai claim this is incorrect.

Claim by Gardner et al. (Nature Physics, volume 7, 895 (2011)) of enhancement.
Introduction

- Theory for the parallel critical field in thin clean superconducting films is varied.
- Claim by V. Kogan on possible enhancement in T_c for thin clean films.
- Work by Scotto and Pesch, and later by Hara and Nagai claim this is incorrect.
- Claim by Gardner et al. (Nature Physics, volume 7, 895 (2011)) of enhancement.
- Can we compare to the theoretical predictions?
From Tinkham, if the film is thin enough ($d_F < 1.84\xi(T)$),

$$H_{c2\parallel}(T) = \frac{\phi_0}{\pi\xi(T)}\frac{\sqrt{3}}{d_F}$$

(if film is dirty!)
Theory of Parallel Critical Field for Thin Superconducting Films

- From Tinkham, if the film is thin enough \((d_F < 1.84\xi(T))\),
 \(H_{c2\parallel}(T) = \phi_0 \sqrt{3}/\pi\xi(T)d_F\) (if film is dirty!)

- V. Kogan’s claim (V. G. Kogan, Phys. Rev. B 34, 3499 (1986).)
Theory of Parallel Critical Field for Thin Superconducting Films

- From Tinkham, if the film is thin enough ($d_F < 1.84\xi(T)$),
 $$H_{c2\parallel}(T) = \phi_0 \sqrt{3}/\pi\xi(T)d_F \text{ (if film is dirty!)}$$
- V. Kogan’s claim (V. G. Kogan, Phys. Rev. B 34, 3499 (1986).)
- Enhancement in T_c for $d_F < d_c$ where $d_c^2 = 7.2\gamma(\lambda_{tr})\ell^2$.

P.R. Broussard, A. Hunziker, A. Davis
Covenant College, Lookout Mountain, GA 30750, University of Basel, Switzerland
Theory of Parallel Critical Field for Thin Superconducting Films

- From Tinkham, if the film is thin enough \(d_F < 1.84\xi(T)\),
 \[H_{c2\parallel}(T) = \frac{\phi_0}{\pi}\sqrt{3/\xi(T)}d_F\] (if film is dirty!)
- V. Kogan’s claim (V. G. Kogan, Phys. Rev. B 34, 3499 (1986).)
- Enhancement in \(T_c\) for \(d_F < d_c\) where \(d_c^2 = 7.2\gamma(\lambda_{tr})\ell^2\).
- \(\ell\) is the elastic mean free path, \(\lambda_{tr} = \xi/\ell\), \(\xi = \frac{\hbar v_F}{2\pi k_B T_c}\) is a coherence length, and \(\gamma(x)\) is given by

\[
\gamma(x) = \frac{x^2 \sum_{n=0}^{\infty} (2n+1)^{-2}(2n+1+x)^{-3}}{\sum_{n=0}^{\infty} (2n+1)^{-2}(2n+1+x)^{-1}}.
\]
Theory of Parallel Critical Field for Thin Superconducting Films

- Initial work by Scotto and Pesch, JLTP 84, 301 (1991) critiqued Kogan’s result.

Later work by Hara and Nagai, J. Phys. Soc. Japan, 63, 2331 (1994): Parallel critical field can be expanded as

\[t_C(\lambda) = 1 + C_2 \lambda^2 + \cdots \]

where \(t_C = T_c(B)/T_c(0) \), \(\lambda = (eB/\hbar)\xi^2 \) and \(\xi = (\hbar v_F/(2\pi k_B T_c(0))) \).

From their paper, \(C_2 \) can be calculated as

\[C_2 = \sum_{n=0}^{\infty} \left(\frac{8}{15} \tilde{\epsilon}_3 \epsilon_2^n - \frac{2}{9} \tilde{\epsilon}_2 \epsilon_2^n - \frac{8}{27} \tilde{\epsilon}_4 \epsilon_2^n - \frac{2}{3} \tilde{\epsilon}_1 \epsilon_2^n \right) \]
Theory of Parallel Critical Field for Thin Superconducting Films

- Initial work by Scotto and Pesch, JLTP 84, 301 (1991) critiqued Kogan’s result.
- Later work by Hara and Nagai, J. Phys. Soc. Japan, 63, 2331 (1994): Parallel critical field can be expanded as

$$t_C(\lambda) = 1 + C_2 \lambda^2 + \cdots$$

where

$$t_C = \frac{T_c(B)}{T_{c0}}, \quad \lambda = \frac{eB}{\hbar} \xi^2$$

and

$$\xi = \frac{\hbar v_F}{(2\pi k_B T_{c0})}$$

From their paper, C_2 can be calculated as

$$C_2 = \sum_{n=0}^{\infty} \left(\frac{815}{3} \tilde{\epsilon}^3 \tilde{\epsilon}^2 - \frac{9}{2} \tilde{\epsilon}^4 \tilde{\epsilon}^2 - \frac{2}{9} \tilde{\epsilon}^4 I_n \right)$$
Theory of Parallel Critical Field for Thin Superconducting Films

- Initial work by Scotto and Pesch, JLTP 84, 301 (1991) critiqued Kogan’s result.
- Later work by Hara and Nagai, J. Phys. Soc. Japan, 63, 2331 (1994): Parallel critical field can be expanded as

\[t_C(\lambda) = 1 + C_2 \lambda^2 + \cdots \]
Theory of Parallel Critical Field for Thin Superconducting Films

- Initial work by Scotto and Pesch, JLTP 84, 301 (1991) critiqued Kogan’s result.
- Later work by Hara and Nagai, J. Phys. Soc. Japan, 63, 2331 (1994): Parallel critical field can be expanded as

\[t_C(\lambda) = 1 + C_2 \lambda^2 + \cdots \]

where \(t_C = T_c(B)/T_{c0} \), \(\lambda = (eB/\hbar)\xi^2 \) and \(\xi = \hbar v_F/(2\pi k_B T_{c0}) \).
Theory of Parallel Critical Field for Thin Superconducting Films

- Initial work by Scotto and Pesch, JLTP 84, 301 (1991) critiqued Kogan’s result.
- Later work by Hara and Nagai, J. Phys. Soc. Japan, 63, 2331 (1994): Parallel critical field can be expanded as

\[t_C(\lambda) = 1 + C_2 \lambda^2 + \cdots \]

where \(t_C = T_c(B)/T_{c0}, \lambda = (eB/\hbar)\xi^2 \) and \(\xi = \hbar v_F/(2\pi k_B T_{c0}) \)
- From their paper, \(C_2 \) can be calculated as

P.R. Broussard, A. Hunziker, A. Davis
Covenant College, Lookout Mountain, GA 30750, University of Basel, Switzerland
Parallel Critical Fields in Niobium: Comparison to Theory
Theory of Parallel Critical Field for Thin Superconducting Films

- Initial work by Scotto and Pesch, JLTP 84, 301 (1991) critiqued Kogan’s result.
- Later work by Hara and Nagai, J. Phys. Soc. Japan, 63, 2331 (1994): Parallel critical field can be expanded as

\[t_C(\lambda) = 1 + C_2 \lambda^2 + \cdots \]

where \(t_C = T_c(B)/T_{c0}, \lambda = (eB/\hbar)\xi^2 \) and \(\xi = \hbar v_F/(2\pi k_B T_{c0}) \)
- From their paper, \(C_2 \) can be calculated as

\[C_2 = \sum_{n=0}^{\infty} \left(\frac{8}{15\tilde{\epsilon}_n^3\epsilon_n^2} - \frac{2d^2}{9\tilde{\epsilon}_n^2\epsilon_n^2} - \frac{8}{\epsilon_n^4\epsilon_n^2d} l_n \right) \]
Theory of Parallel Critical Field for Thin Superconducting Films

where \(I_n = \int_0^{\pi/2} \sin^3(\theta) \cos^3(\theta) \tanh \left(\frac{\tilde{\epsilon}_n d}{2 \cos(\theta)} \right) d\theta, \)

We will have to account for strong coupling, which the theory does not.

\(\eta Bc^2 \approx 1.06 \) for our niobium.

Showed \(C_2 < 0 \) always, while Kogan claimed for clean enough and thin enough, \(C_2 > 0 \) near \(t \approx 1. \)
Theory of Parallel Critical Field for Thin Superconducting Films

- where $I_n = \int_0^{\pi/2} \sin^3(\theta) \cos^3(\theta) \tanh \left(\frac{\tilde{\epsilon}_n d}{2 \cos(\theta)} \right) d\theta$,
- $\epsilon_n = 2n + 1$, and $\tilde{\epsilon}_n = 2n + 1 + 1/\lambda_{tr}$,
Theory of Parallel Critical Field for Thin Superconducting Films

- $I_n = \int_0^{\pi/2} \sin^3(\theta) \cos^3(\theta) \tanh \left(\frac{\tilde{\epsilon}_n d}{2 \cos(\theta)} \right) d\theta,$
- $\epsilon_n = 2n + 1,$ and $\tilde{\epsilon}_n = 2n + 1 + 1/\lambda_{tr},$
- and $d = d_F/\xi.$
Theory of Parallel Critical Field for Thin Superconducting Films

- where \(I_n = \int_0^{\pi/2} \sin^3(\theta) \cos^3(\theta) \tanh \left(\frac{\tilde{\epsilon}_n d}{2 \cos(\theta)} \right) d\theta \),
- \(\epsilon_n = 2n + 1 \), and \(\tilde{\epsilon}_n = 2n + 1 + 1/\lambda_{tr} \),
- and \(d = d_F/\xi \).
- We will have to account for strong coupling, which the theory does not.
Theory of Parallel Critical Field for Thin Superconducting Films

- where $I_n = \int_0^{\pi/2} \sin^3(\theta) \cos^3(\theta) \tanh \left(\frac{\tilde{\epsilon}_n d}{2 \cos(\theta)} \right) d\theta$,
- $\epsilon_n = 2n + 1$, and $\tilde{\epsilon}_n = 2n + 1 + 1/\lambda_{tr}$,
- and $d = d_F/\xi$.
- We will have to account for strong coupling, which the theory does not.
- $\eta_{Bc2} \approx 1.06$ for our niobium.
Theory of Parallel Critical Field for Thin Superconducting Films

- where $I_n = \int_0^{\pi/2} \sin^3(\theta) \cos^3(\theta) \tanh \left(\frac{\tilde{\epsilon}_n d}{2 \cos(\theta)} \right) d\theta$,
- $\epsilon_n = 2n + 1$, and $\tilde{\epsilon}_n = 2n + 1 + 1/\lambda_{tr}$,
- and $d = d_F/\xi$.
- We will have to account for strong coupling, which the theory does not.
- $\eta_{Bc2} \approx 1.06$ for our niobium.
- Showed $C_2 < 0$ always, while Kogan claimed for clean enough and thin enough, $C_2 > 0$ near $t \approx 1$.

P.R. Broussard, A. Hunziker, A. Davis
Covenant College, Lookout Mountain, GA 30750, University of Basel, Switzerland
Parallel Critical Fields in Niobium: Comparison to Theory
Nb films grown by magnetron sputtering onto (100) oriented Si or A-plane/C-plane Sapphire substrates

Substrate Stage at Room Temperature or 300°C

Base Pressure <4 x 10^{-8} Torr with LN$_2$ cooled surface

Deposition Rates ≈ 8 nm/minute

Film thicknesses from 15 to 100 nm

Argon sputter pressure varied from 0.5-5 mTorr
Best Result: XRD along film normal

S (11-20)
2θ : 37.786°
Rocking FWHM : 0.008°

Thickness
~25nm from fringes

Nb (110)
2θ : 38.6342°

Nb Rocking FWHM: 0.02°
Best Result: XRD pole plot

Schematic pole-figure

Parallel Critical Fields in Niobium: Comparison to Theory
Measurement Method for Critical Fields

- Critical Fields determined by Van der Pauw resistive transition.
- Sample current at 1 mA, $B_{c2||}$ determined by midpoint.
- CERNOX thermometer, OFHC platform, Cryocooler
- Multiple trials to ensure consistency.
- Maximum field is 707 mT
Transport for 25 nm Nb film

Resistance per square vs Temperature

Parallel Critical Field

P.R. Broussard, A. Hunziker, A. Davis Covenant College, Lookout Mountain, GA 30750, University of Basel, Switzerland

Parallel Critical Fields in Niobium: Comparison to Theory
2D behavior for 48 nm Nb film

\[T = 8.00 \text{ K} \quad (t=0.967) \]

Tinkham 2D formula

- **Graph**
 - **Y-axis**: \(B_{c2}(t) \) (mT)
 - **X-axis**: Angle between \(B \) and film normal (°)

P.R. Broussard, A. Hunziker, A. Davis
Covenant College, Lookout Mountain, GA 30750, University of Basel, Switzerland

Parallel Critical Fields in Niobium: Comparison to Theory
Comparison to Theory for 25 nm Nb film ($d_c \approx 30$ nm)
Comparison for $|C_2|$ for $d_F/\xi \approx 0.6$
Comparison for all films

![Graph showing experimental vs. theoretical values of $|C_2|$ for all films. The graph compares $|C_2|$ experimental values against $|C_2|$ theoretical values, with data points indicating a close alignment with the theoretical line.](image-url)
Comparison for smaller values
Conclusions

- Definitely seeing experimental $|C_2|$ lower than expected.
Conclusions

- Definitely seeing experimental $|C_2|$ lower than expected.
- Question on strong coupling correction: η_{Bc2} or η_{Bc2}^2?
Conclusions

- Definitely seeing experimental $|C_2|$ lower than expected.
- Question on strong coupling correction: η_{Bc2} or η_{Bc2}^2?
- Had at least two films with $d_F < d_c$, so Kogan theory is not tenable.