Precision Muon Experiments and the Standard Model.

Tim Gorringe, Dept. of Physics and Astronomy, Univ. of Kentucky

Annual Meeting of the APS Southeastern Section, Nov 11, 2016, Charlottesville, Virginia
Measurements of e^\pm time distributions from μ decay

- describe recent / ongoing precision measurements of e^\pm time distributions from $\mu \rightarrow e\nu\nu$ decay.
- involve measurements of 10^{11}-10^{12} decays and mining of petabyte-scale datasets.

encoded in time distribution are muon lifetime and precession signal.
A quick tour of

MuLan @PSI

MuCap @PSI

MuSun @PSI

Muon g-2 @FNAL
A quick tour of

MuLan
Fermi constant and Higgs field.

MuCap
QCD symmetries and hadronic mass.

MuCap
hydrogen burning and solar neutrinos

Muon g-2
new particles and unknown forces
MuLan - lifetime of the positive muon τ_{μ^+}

a purely-leptonic decay that's amenable to muon decay

\[
\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_\mu^5}{192 \pi^2} \left(1 + \Delta q\right)
\]

Δq contains QED, QCD radiative corrections

~ 0.1 ppm uncertainty in $\tau_{\mu} - G_F$ relationship from $\Delta q, m_\mu$
MuLan - accumulating \(\mu^+ \)'s and measuring \(e^+ \)'s
MuLan - accumulating μ^+'s and measuring e^+'s
MuLan detector

a tile
a house ..
the ball.
\(\tau_{\mu} \) is an “anchor” in tests of weak universality using \(\tau \rightarrow e\nu\nu, \tau \rightarrow \mu\nu\nu \) decays and also studies of muon capture by lifetime techniques.

The Fermi constant, \(G_F \) (MuLan) = \(1.1663788(7) \times 10^{-5} \) GeV\(^{-2} \) [0.6 ppm], together with the mass of the Higgs particle, determine the Higgs vacuum expectation value, \(v \), and self interaction parameter, \(\lambda \).
MuCap - lifetime of muon hydrogen atom, $\tau_{\mu p}$

- **Muon capture**, $\mu^- p \rightarrow n \nu$
- **Beta decay**, $p \rightarrow n e^+ \nu$

- Proton's weak couplings g_v, g_a, g_m, g_p

- The induced pseudoscalar coupling g_p is fundamental quantity in description of proton's weak interaction.

- Relation between couplings g_p, g_a is predicted by QCD symmetries and symmetry breaking arguments that generate the masses of protons, neutrons and other hadrons.
determine the $\mu\cdot p \to \nu n$ capture rate by $\Lambda = 1/\tau_\mu - 1/\tau_{\mu p}$

MuCap - lifetime of muon hydrogen atom, $\tau_{\mu p}$

$\log(\text{counts})$

$\exp(-t/\tau_{\mu p})$ $\exp(-t/\tau_\mu)$

$\sim 10^{-3}$ difference

$time$
MuCap - μ-ρ chemistry, a complication

Different atomic, molecular species, with different μp-spin decompositions and different capture rates.

use ultra-pure (chemically, isotopically) 10 bar H₂ (1% liquid hydrogen density) to prepare near-pure singlet atoms.
MuCap setup

\[e \]

Tracking in TPC

\(\mu\text{PC}, \mu\text{SC}, \mu\text{SCA}\)

ePC2

ePC1

TPC

eSC
MuCap Result, $\Lambda_s = 715.6 \pm 5.4$ (stat) ± 5.1 (syst) s$^{-1}$

$g_p = 8.06 \pm 0.48$ (expt) ± 0.2 (thry)

- Result for g_p is essentially free of ambiguities associated with μ chemistry
- Verifies our understanding of chiral symmetry breaking in QCD (origins of neutron, proton masses).
the μ-d capture rate depends on the poorly known two-nucleon weak axial current - the parameter L_{1A} (or d_R) in QCD-inspired effective field theories).

knowledge of this current is important for calculation of pp thermonuclear fusion in sun (the main source of solar energy).

also important for precision determination of 8B solar neutrino flux from measurements of vd charged / neutral current interaction rates in heavy water.
MuSun - $\mu^{-}d$ chemistry, a complication

Use ultra-pure (chemically, isotopically) 30 Kelvin, 5% liquid density D_{2} gas, to prepare doublet state atoms.

Different atomic, molecular species, with different μd-spin decompositions and different capture rates.

Muon catalyzed fusion

Muon recycling
$\mu^{-} + ^{3}\text{He} + n$
$\mu^{-} + ^{3}\text{H} + p$

Muon sticking
$\mu^{-}^{3}\text{He} + n$
$\mu^{-}^{3}\text{H} + p$
MuSun - μ-d chemistry, a complication

Molecular formation rates from doublet / quartet states

Population of muonic atom species

Almost no molecule formation by doublet atoms at low temps.
MuSun Cryogenic TPC

Provides identification of muon stops in D_2 gas
Goal of ±1.5% measurement of capture rate Λ_d – five-fold improvement over prior measurements and commensurate with EFT predictions.

Enables determination of two-body weak axial current (L_{1A}/d_R) in 2N sector with x5 precision. Permits the calibration of basic solar neutrino and astrophysical reactions.

Theses include rates of μ-chemistry, the doublet capture rate, and hyperfine effect in muon capture.
Anomalous moment and g-factor, \(a = (g-2)/2 \).

\[\vec{\mu} = g \frac{e}{2m} \hat{S} \]

Dirac theory endows the point-like, spin-1/2 particles with a g-factor of exactly 2

For two decades the measurement of the electron's g-factor were in agreement with the Dirac equation.

The Kusch-Foley experiment - using precision measurements of Zeeman splittings - discovered the electron's g-factor was slightly larger than 2, \(g_e = 2.00238(6) \).

Schwinger – within a year - explained the anomaly by means of the electron's self-interaction and vacuum fluctuations.
Muon's anomalous magnetic moment, $a_\mu = (g-2)/2$, in the Standard model.
Muon anomalous magnetic moment, a_μ.

--- SM prediction ---

<table>
<thead>
<tr>
<th>Theory</th>
<th>Year</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMNT</td>
<td>06</td>
<td>$165.7591802 (49) \times 10^{-11}$ (0.42 ppm)</td>
</tr>
<tr>
<td>JN</td>
<td>09</td>
<td></td>
</tr>
<tr>
<td>Davier et al, τ</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Davier et al, e^+e^-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>HLMNT</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HLMNT</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

--- experiment ---

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL</td>
<td>$165.7592089 (63) \times 10^{-11}$ (0.54 ppm)</td>
</tr>
<tr>
<td>BNL (new from shift in λ)</td>
<td></td>
</tr>
</tbody>
</table>
Muon anomalous magnetic moment, a_μ.

- BNL E821 measured $a_{\lambda\mu}$ to a precision of 0.54 ppm and represents a stringent test of Standard Model and constraint on unknown particles / forces.
- Current $\sim 3.5\sigma$ deviation between experiment and SM is arguably the strongest hint of new physics from particle / nuclear experiments.
• Goal of Fermilab g-2 expt is a statistical uncertainty of 100 ppb in a_μ – requires x21 the number of positrons in BNL821.

• Re-purposed accelerator infrastructure will provide a pure, polarized, 3.1 GeV/c, muon beam with 12 Hz pulse rate and 100 ns pulse length (muons are made via pion production and subsequent decay).
Muons of momentum 3.094 GeV/c are injected and stored in a highly-uniform, vertical magnetic field with electrostatic quadrupoles for vertical confinement.
<table>
<thead>
<tr>
<th>Physical frequency</th>
<th>Variable Expression</th>
<th>Frequency</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomalous precession</td>
<td>(f_a = \frac{e}{2\pi m} a \mu B)</td>
<td>0.23 MHz</td>
<td>4.37 (\mu)s</td>
</tr>
<tr>
<td>Cyclotron</td>
<td>(f_c = \frac{e}{2\pi q} b)</td>
<td>6.71 MHz</td>
<td>149 ns</td>
</tr>
<tr>
<td>Horizontal betatron</td>
<td>(f_x = \sqrt{1-n f_c})</td>
<td>6.23 MHz</td>
<td>160 ns</td>
</tr>
<tr>
<td>Vertical betatron</td>
<td>(f_y = \sqrt{n f_c})</td>
<td>2.48 MHz</td>
<td>402 ns</td>
</tr>
<tr>
<td>Horizontal CBO</td>
<td>(f_{CBO} = f_c - f_x)</td>
<td>0.48 MHz</td>
<td>2.10 (\mu)s</td>
</tr>
<tr>
<td>Vertical waist</td>
<td>(f_{VW} = f_c - 2f_y)</td>
<td>1.74 MHz</td>
<td>0.57 (\mu)s</td>
</tr>
</tbody>
</table>

Penning trap
Penning trap for 3.094 GeV/c muons.
Muons of momentum 3.094 GeV/c are stored in highly-uniform, vertical magnetic field with electrostatic quadrupoles for vertical confinement.

\[\vec{p} \]
\[\vec{s} \]

Anomalous frequency
Cyclotron frequency
Larmor frequency

\[\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = - \frac{q}{m} \left[a_\mu \vec{B} - \left(a_\mu \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] \]

\[\gamma = 29.3 \]

\[\sim 0, \text{ at magic momenta} \]
Muon decay $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ and energy-angle distribution of electrons about μ-polarization.

In μ^+ decay the V-A form of weak interactions favors positron emission opposite the μ-spin direction.

`self-analyzing' muons
Forwarded-emitted electrons have high energies.

- Due to relativistic boost the forward-emitted electrons have high energies and backward-emitted electrons have low energies.

- Time distribution of high-energy electrons (forward-emitted electrons) is therefore modulated by anomalous precession frequency.

\[
\frac{dN}{dt} = N_0 e^{-t/\tau} \left[1 + A \cos\left(\omega \tau t + \phi \right) \right]
\]

* not really so simple
\[\omega_a = -\frac{q}{m} [a_{\mu} B] \] and determination of the muon anomaly, \(a_{\mu} \)

\[
 a_{\mu} = \frac{\omega_a / \omega_p}{\mu_{\mu} / \mu_p - \omega_a / \omega_p}
\]

measured proton Lamor precession frequency
measured muon anomalous precession frequency
known to 26ppb from muonium hyperfine experiment.

proton NMR used to measure the B-field in storage ring.
Schedule

<table>
<thead>
<tr>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construction (Project & Muon Campus):
- g-2 Cryo Plant
- Ring Assembly
- Shim Field
- Prep Chambers/Install
- Construct/Install Sub-systems
- Accelerator Modifications
- **Ring cold ready for operations**
- **Experiment ready for operations**
- **Accelerator ready for operations**

Operations (Laboratory):
- Ring Cold
- Detector/DAQ Commission
- Beam Tune-up
- **Full Running Intensity**
- Physics Production Running

Analysis (Collaboration):
- Analysis Tools Development
- Mock Data
- 1st Results
- 2nd Results
- 5-10 x BNL
- 21 x BNL
- Final Results