Conduit Bound Sound Propagation Separation Model

Ken McGill

Arthur Shue, Abigail Savage, Aiden Burleson, Cain Gantt and Joshua Moore
Fundamental concept

Sound Propagating with the flow will propagate faster than the speed of sound
Speed Left to Right = \(c + v = V(LR) \)

Sound Propagating against the flow will propagate slower than the speed of sound
Speed Right to Left = \(c - v = V(RL) \)

Note:
\(c = \text{Speed of Sound in the fluid} \)
\(v = \text{flow velocity of fluid} \)
Fundamental concept

If we have a method of measuring $V(LR) = c + v$ and $V(RL) = c - v$ we can simply determine both the flow velocity of the fluid and the speed of sound in the fluid

$$c = \frac{(V(LR) + V(RL))}{2}$$

$$v = \frac{(V(LR) - V(RL))}{2}$$

Note:
$c =$ Speed of Sound in the fluid
$v =$ flow velocity of fluid
This simple concept has proven to be not so simple in practice

- Whole texts have been written on the subject (e.g. Beck and Plaskowski 1987)
- The methods were not successful because of the super position principle of waves that caused interference from unwanted sound (i.e. noise)
- This noise could not be removed, hence it had to be measured.
- The noise is no longer a problem—It’s the Solution!
The solution is to listen to the noise already present in the pipe with multiple transducers

- We can listen to the sound through the wall of the pipe, and do not need to cut into the pipe.
- A two dimensional Fast Fourier Transform (2d-FFT) will reveal the necessary information
To a first approximation the Left-to-Right wave can be separated from the Right-to-Left waves in the 2d-FFT

$$\Psi_{LR}(z, t) = Ne^{2\pi i (ft - k\tau)}$$

$$\Psi_{RL}(z, t) = Ne^{2\pi i (ft + k\tau)}$$

The slopes of these lines will equal $V(LR)$ and $V(RL)$

$$c = \frac{(V(LR) + V(RL))}{2}$$

$$v = \frac{(V(LR) - V(RL))}{2}$$
Real data reveals these lines, but a lot more!
The diagonal lines are clearly present, and were explained in U.S. patent US2006/0201430 A1

But, what about these other curves above the diagonal lines?
Conduit Bound Sound Propagation Separation Model

To model this wave we must return to the fundamental wave equation

\[\nabla^2 \Psi = \frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2} \]

Given that the wave is confined to a cylinder the natural approach is to represent this equation in cylindrical coordinates

\[\frac{1}{r} \left(\frac{\partial}{\partial r} r \frac{\partial}{\partial r} \Psi \right) + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \phi^2} + \frac{\partial^2 \Psi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2} \]
Conduit Bound Sound Propagation Separation Model

If we now assume a separable solution where $R(r)$ represents the bound radial component of the wave, $\Phi(\phi)$ represents the angular rotation of the wave in the cylinder and $P(z,t)$ represents the unbound propagating wave

\[
\Psi(r,z,t) = R(r)\Phi(\phi)P(z,t)
\]

The wave equation now reduces to the following

\[
\frac{r}{R(r)}\left(\frac{\partial}{\partial r}r\frac{\partial}{\partial r}R(r)\right) + \frac{r^2}{P(z,t)}\left(\frac{\partial^2 P(z,t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 P(z,t)}{\partial t^2}\right)
\]

\[
= - \frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} = m^2
\]

The solution for the angular wave is now found to be the following

Where $m=0, \pm 1, \pm 2...$

\[
\Phi(\phi) = e^{im\phi}
\]
We now introduce a new constant A where A has the form below, and rearrange to further separate the variables

$$\frac{1}{rR(r)} \left(\frac{\partial}{\partial r} r \frac{\partial}{\partial r} R(r) \right) + \frac{1}{P(z, t)} \left(\frac{\partial^2 P(z, t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 P(z, t)}{\partial t^2} \right) = \frac{m^2}{r^2} = A^2$$

This reduces to the traditional form of the m order cylindrical Bessel function of the first kind

$$r^2 \frac{\partial^2 R}{\partial r^2} + r \frac{\partial R}{\partial r} + (A^2 r^2 - m^2) R = 0$$

Where $R(r) = J_m(Ar)$
We are now left to consider the unbound portion of the wave that can propagate from Left to Right and from Right to Left.

\[
\frac{1}{P(z, t)} \left(\frac{1}{c^2} \frac{\partial^2 P(z, t)}{\partial t^2} - \frac{\partial^2 P(z, t)}{\partial z^2} \right) = -A^2
\]

This equation has two fundamental solutions.

For both equations we serendipitously have the same result below when substituted into the above equation.

\[
P_{RL}(z, t) = e^{2\pi i (ft + kz)} \text{ for Right to Left}
\]

\[
P_{LR}(z, t) = e^{2\pi i (ft - kz)} \text{ for Left to Right}
\]

\[
(2\pi)^2 \left(\frac{f^2}{c^2} - k^2 \right) = A^2
\]
Given that the velocity of the wave is defined as \((\mathbf{v} \cdot \nabla \psi) \), and that the radial velocity at the wall must be zero we have the following boundary condition.

\[
\nu_r = -\frac{\partial \psi}{\partial r} = -\frac{\partial J_m(Ar)}{\partial r} = 0
\]

These roots of the first derivative of the Bessel function can only be found numerically.

<table>
<thead>
<tr>
<th>j</th>
<th>Root(0,j)</th>
<th>Root(1,j)</th>
<th>Root(2,j)</th>
<th>Root(3,j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>3.8317059702</td>
<td>1.8411837813</td>
<td>3.0542369282</td>
<td>4.2011889412</td>
</tr>
<tr>
<td>2</td>
<td>7.0155866698</td>
<td>5.3314427735</td>
<td>6.7061331942</td>
<td>8.0152365984</td>
</tr>
<tr>
<td>3</td>
<td>10.1734681351</td>
<td>8.5361465742</td>
<td>9.9694678231</td>
<td>11.3459243107</td>
</tr>
</tbody>
</table>

This now reduces to a solution that can now model the off-diagonal curves

\[
\left(\frac{2\pi}{\sqrt{\frac{f^2}{c^2} - k^2}} \right) r_w = \text{Root}(m,j)
\]

Note: Root=0.0 yields \(f/k = c \) for the diagonal.
As outlined in U.S. Patent No. 9,441,993 (McGill) these curves can be explained by better wave equations.

\[
\Psi_{LR}(r, z, t) = NJ_m \left[\left(2\pi \sqrt{\frac{f^2}{c^2} - k^2} \right) r \right] e^{2\pi i (ft - kz)}
\]

\[
\Psi_{RL}(r, z, t) = NJ_m \left[\left(2\pi \sqrt{\frac{f^2}{c^2} - k^2} \right) r \right] e^{2\pi i (ft + kz)}
\]
Thank you

• SESAPS 2016
• Georgia College & State University